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1. Introduction and Summary.-We consider several one- and two-population
nonparametric hypothesis-testing problems and derive sequential tests with
power one and uniformly small error probability under the null hypothesis.
Bounds for the expected sample size under the alternative hypothesis are given.
These tests provide a first step toward the extension to the nonparametric case
of the methods described in reference 3.

2. The Tests.-For any two distribution functions (d.f.'s) GH denote

D+(G,H) = sup (G(t) - H(t)), D(G,H) = sup IG(t) - H(t)f.
-co< t < oo -a>< J <co

Let 0 < e < 1 and a positive integer m be given, and let f(x) denote any continu-
ous, positive, nondecreasing function defined for x > m and such that (i) f(x) < x;
(ii) f(x)/x is strictly decreasing to 0 as x -a c; (iii) f(x) is concave; and

(iv) Eexp (f+(n) < e.

(Not all these restrictions are needed in some of the results that follow. Some
examples of such functions are given in section 4.) For 0 < x < f(m)/m, define
g(x) to be the function inverse to f(x)/x.

Let x1,x2, ... be independent, identically distributed (i.i.d.) with d.f. FX(t) =
P(x, . t), and let Y1,Y2,... be i.i.d. with d.f. F,(t), the x's and y's being inde-
pendent. Denote by F'n(t) = (number of values x1,... -,x that are . t)/n the
empirical d.f. of xl, . . .,xn, and by F n(t) the empirical d.f. of Yi,... ,Yn (n > 1).

(a) Consider the hypothesis
H1: F(t) _ F,(t) for every - o < t < o.

THEOREM 1. Define N as the smallest n > m such that D+(FxZFI) > f(n)/n
and reject H1 iff N < o. Then

if HI is true, P(reject H1) < e; (2.1)

if H1 is false, P(reject H1) = 1. (2.2)

If H1 is false and D+(F.,F,) = d > 0 with d _ f(m)/m, then

EN _ g (d - (2.3)

(b) Consider the hypothesis

H2: F(t) = F,(t) for every - co < t < ao.

THEOREM 2. Define N as the smallest n > m such that D(F¶"F~n) > f(n)/n,
and reject H2 iff N < co. Then
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if H2 is true, P(reject H2) _ 2e; (2.4)

if H2 is false, P(reject H2) = 1. (2.5)

If H2 is false and D(FZFy) = d >0 with d . f(m)/m, then (2.3) holds.
(c) Let Fo be any specified d.f. and consider the hypothesis

Ha: F2(t) _ Fo(t) for every - co < t < co.

THEOREM 3. Define N as the smallest n > m such that D+(FnFo) _ f(n)/n,
and reject H3 iffN < co. Then

if Ha is true, P(reject Ha) . 2xV/E; (2.6)

if Ha is false, P(reject H3) = 1. (2.7)

If H3 is false and D+(F.,Fo) = d > 0 with d _ f(m)/m, then (2.3) holds.
(d) Let 9 be any class of d.f.'s closed under the D metric; e.g., 9 may consist

of a single d.f.FO or of the set N(p,a2),-X < , < co .< 2 < cD Detc. Con-
sider the hypothesis

H4:F, 9.

Define w. = inf D(FZ¶G).
Ge9

THEOREM 4. Define N as the smallest n > m such that w>. f(n)/n and reject
H4 iffN < o. Then

if H4 is true, P (reject H4) . 4v2e; (2.8)

if H4 is false, P (reject H4) = 1. (2.9)

If H4 is false and inf D(F.,G) = d > 0 with d _ f(m)/m, then (2.3) holds.
Ge9

3. Proofs of Theorems.-For integers 0 . r < n, define

(n!)2

Asr~n) - (n - r)!(n + r)! (3.1)

If FF are arbitrary d.f.'s such that HI holds, then it may be shown that

P (D+(Fx2Fyfl) > - < A(r,n). (3.2)

(If Fx _ Fy is continuous, the equality sign holds between the two terms of (3.2);
this was shown by Gnedenko and Korolyuk4 and follows from an elementary
combinatorial argument. The validity of the inequality of (3.2) for arbitrary
F*,FV satisfying H1 is easily seen by representing the x's and y's as functions of
independent random variables uniformly distributed on (0,1).) We shall now
show that

A(r~n) -< exp(-+1*(3.3)
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It can be calculated (ref. 6, chap. 12, problem 31) that
(1 x11(1 - XT)(1 - Xr)

-log A(r,n) = dx,
Jo (1- x) log x

and by setting x = e-' and using the inequalities cosh y - 1 > y2/2, sinh y/y <

eV, y _ 0, we obtain (3.3) from

-log A(rn) =1J e(n+l/2)t coshrt-1dtJo ~~~sinh (t/2) t

-ormr2> je2(+1/2) -1t/2 dt -o ~ ~~~~n+
Assuming now that H1 is true, and denoting by x* the smallest integer >x,

we have
ao ~~~~~~~~~~~~~~~co

P(N< co) _ i P(D)+(F.",FV") _ f(n)/n) < E A (f(n)*,n)
n=m n=m

CD

-<E exp (-f2(n)/(n + 1)) < C, (3.4)
n =m

which proves (2.1). Equation (2.2) follows from the fact that if H1 is false, then
D+(FznFyn) -- D+(FxF,) = d > 0 with probability 1 as n -- ac, while by
hypothesis f(n)/n -- 0, so that P(N < 'n ) = 1.
To prove (2.3), assume for simplicity that t is a number such that Fx(t) -

Fy(t) = d. The distribution of n(F_"(t) - F n(t)) is that of so = U1 + * + un,
where the u's are i.i.d. with Eu, = d and Juil < 1. Let N' be the smallest
n > m such that so > f(n); then N < N' and

SN' < max (m,f(N') + 1) . m + f(N').

It is easily proved that EN' < co and by Wald's lemma on cumulative sums and
Jensen's inequality, we obtain

dEN' < m + f(EN'), (3.5)

which gives an implicit upper bound for EN' and hence for EN. To obtain an
explicit bound for EN', we observe that the equation

dx = m + f(x), (x > m) (3.6)

has a unique solution xo, and EN . EN' < xo. If we write xo = g(yo), equa-
tion (3.6) becomes

yo = d - g (3.7)
g(Yo),

and iterating this we obtain

m
yo = d- -/d m))

g(Yo))
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so that

yo >_ d - ( (3.8)

and hence EN . xo . g - () which completes the proof of Theorem 1.

Theorem 2 follows by similar reasoning.
The proof of Theorem 3 is based on the fact that if H3 is true, Fo being arbi-

trary, then

ytY(Fz¶Fo)
n

irn r (j -r)J(n -j +r)nJ-P (D(FxtnFo) _ -)< B(r,n)-A (~') n-n j~~=r 3n-j+r nx

(3.9)
(If Fx= Fo, a continuous d.f., then equality holds in (3.9), as was shown inde-
pendently by Smirnov,5 and Birnbaum and Tingey.1) We shall show that
B(r,n) < 2v/2A(r,n), and the method of proof of Theorem 1 shall then yield
the proof of Theorem 3.
Using the solution of the classical ballot problem, we establish the curious

identity
n r (2j- r) (2(n -j)+r

A (r,n) = (3.10)A~r~n) =E 2(n -j) + re 2n; *(.0
j=r 2(-)r(n,)

(In an election in which A and B each receive n votes, let Ej be the event that
when A has j votes he is, for the last time, r votes ahead of B. The jth term in
the sum of (3.10) is P(Ej).) Denote by Rj the ratio of the jth term of (3.9) to
that of (3.10). We complete the proof by showing that Rj . 2V/2. After
some algebra we have

ac
= b(j - r,j)b(n -j + r,n -j)'

with
2(n-j) + r r <a =- . = 2- <=2,
n- + r n-j + r

2\ ( i\ ~~~(2n)!b(x,i) = + X)(1+
2

... 1 + C

Now

log b(x,i) _ f log (1 + ) dy= (x + i) log (1 + )-i,

b(x,i) _ (1 + -) e-, b(j - r,j)b(n. - j + r,n - j)
x

_ (1+ .1 ) (- + n j )2(n - j) + r

j - n - + r
e
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If we set a = 2j -r, = 2(n - j) + r, further algebra and the inequality
1+ x < e' yield

b(- rj)b(n - j + r,n-j) > (1 - r) (1 + r 22ne-" > 22ne-n.

Hence

Rj < ac2-lel < (,,
2(2n)!e

< 2

using Stirling inequalities for the factorials.
To prove Theorem 4, suppose that H4 is true. Then

wn 2 < P(D(FZ¶,FZ) _ -< 2B(r,n) < 4 x/2A(r,n),

and the proof of (2.8) proceeds as in Theorem 1. If H4 is false and inf D(F,,G) =
d > 0, then for any G in 9, G-

D(Fz ,G) 2 D(FZG) - D(F nFx) d - D(Fz"Fz),
so that w. > d - D(FZ3,FZ) -- d with probability 1 as n -X co and hence P(N <
co) = 1. The assertion concerning EN follows as before.

4. Remarks.-(a) It would be simple to extend Theorem 2 to test H:D(FZ,
F,) _ c for any given 0_ c < 1.

(b) Some of the inequalities we use are quite crude, particularly the first in-
equality of (3.4), and the error probabilities are surely much smaller than we
indicate.

(c) We could test H3 by generating an artificial i.i.d. sequence y1,y2,... with
d.f. Fo and by applying Theorem 1. The procedure of Theorem 3, however,
seems more natural.

(d) Possible choices of f satisfying conditions (i)-(iv) of Section 2 are given
by the family

f(x) = ((x + 1)(a log x + log b))l/2, (a > 1, b _ 1) (4.1)

for suitably large values of a, b, and m; e.g., if x > 1 satisfies

ee - 1 > x + 1,

we can take a = 2, b = l/e(x* - 1), m = x*. In particular, for e = 0.05 we
can take a = 2, b = 4, m = 6 in (4.1).

(e) The values of f(x) for large x govern the behavior of EN for small d.
More precisely, from (3.7) and (3.8) we have

1 >-d-_1- f -dI. 1 as d -o-,d = f(g(d))

so that yo'-'d andEN .- xo g(yo) --sg(d) asd-0. If as in(4.1) f(x)
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0 1cVx log-x as x -* Xo, it is simple to deduce thatg(x) - log - as x -0 0 and
x2 x

hence EN = 0 log )asd 0.

It is interesting to compare this with the EN of a parametric test in reference 3.

Suppose the xtare N(s,1), i > 0. Then D(N(M,1),N(0,1)) 1a 0+,

and hence, ifH is false, the test of Theorem 3 applied to the hypothesis H: A _ 0

would have EN = ° 2log -), 4 - 0+. The test in reference 3, however, has

EN = ° 2 log log -), and this is the minimum possible order of magnitude.

( One cannot have f(x) = O(Vx logx), x -- co if inequality (iv) is to hold.
The existence of tests for which f(x) = O(V/x log log x) follows from the results of
Chung,2 but we have not been able to exhibit them, owing to a lack of inequalities
similar to those in the present paper.

(g) In addition to the bound (2.3) on EN, it can be shown that there exists
h > 0 such that E(ehN) < co.
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